Periodic Solutions of Second Order Differential Equations

Department of Mathematical and Statistical Sciences Joshua George, Mohammad Ali Niksirat

Abstract

We study the existence of solutions to the second order differential equation through topological degree theory. In this poster I show the Brouwer Fixed Point Theorem which states that if $f \in C(\overline{D}, \overline{D})$ where D is open, then there exists a $x \in D$ such that $f(x) = x$.

Background Information

The Dirac Delta can be loosely thought of as a function on the real line which is zero everywhere except at the origin, where it is infinite and it satisfies the following two conditions $\int_{-\infty}^{\infty} \delta(t) dt = 1$ and $\int_{-\infty}^{\infty} f(t) \delta(t) dt = f(0).$

A Green's function, $G(x, s)$, of a linear differential operator $\mathcal{L} = \mathcal{L}(x)$ acting at a point s, is any solution of $\mathcal{L}G(x, s) =$ $\delta(s-x)$. The reason as to why Greens function is considered is as given a ODE, $L(\text{solution}) = \text{source}$, when we first solve $\mathcal{L}(\text{Green}) = \delta_s$, for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of \mathcal{L} .

Solution of $x'' = f(t, x, x')$

We first find the Green Function for $x'' + \lambda^2 x = \delta(t-s)$, $\int \sin(\lambda(t-s+\omega)) + \sin(\lambda(s-t))$

$$
G(t,s) = \n\begin{cases} \n\frac{2\lambda(1-\cos(\lambda\omega))}{\sin(\lambda(s-t+\omega))+\sin(\lambda(t-s))} & 0 \leq t < s \leq \omega \\ \n\frac{2\lambda(1-\cos(\lambda\omega))}{\sin(\lambda(t-s))} & 0 \leq s < t \leq \omega \n\end{cases}
$$

This is verified as it satisfies the continuity, derivative jump and symmetric properties of Greens functions. Now since $G(t, s)$ is a solution for the above ODE we claim the following.

Claim 1. The solution to the following B.V.P,

$$
\begin{cases}\nx'' = f(t, x(t), x'(t)) \\
x(0) = x(\omega) \\
x'(0) = x'(\omega)\n\end{cases}
$$
\nis $x(t) = \int_0^\omega G(t, s) \{f(s, x(s), x'(s)) + \lambda^2 x(s)\} ds$

Brouwer Degree

If $U \subset \mathbb{R}^n$ is a bounded region, $f: \overline{U} \to \mathbb{R}^n$ smooth, p a regular value of f and $p \notin f(\partial U)$, then the degree $\deg(f, U, p)$ is defined by the formula

$$
\deg(f,U,p):=\sum_{x_i\in f^{-1}(p)}\operatorname{sgn}\det(J_f(x_i))
$$

The degree satisfies the following properties:

(p1) (normalization) If $0 \in U$, then $\deg(I, U) = 1$: (p2) (additivity) Let $U_1, U_2 \subset U$ be such open sets that $U_1 \cap U_2 = \emptyset$ and $0 \notin f(U \setminus (U_1 \cup U_2))$, then

 $\deg(f, U) = \deg\left(f|_{\overline{H_1}}, U_1\right) + \deg\left(f|_{\overline{H_1}}, U_2\right)$

(p3) (homotopy invariance) if f and g are homotopy equivalent via a homotopy f_t such that $f_0 = f, f_1 = g$ and $p \notin f_t(\partial \Omega)$ then $\deg(f, U) = \deg(q, U)$.

Properties and Results

Here we assume f is defined as before. $(p4) \deg(f, \emptyset) = 0$ (p5) (excision) Let $V \subset U$ is such open bounded set that $0 \notin f(\bar{U}\backslash V)$. Then $\deg(f, U) = \deg(f|_{\bar{V}}, V)$ (p6)Let f be defined as before be such that $0 \notin f(\bar{U})$. Then deg(f, U) = 0. (p7) (existence). Assume $\deg(f, U) \neq 0$. Then there exists such $x_0 \in U$, that $f(x_0) = 0$ We call a point **regular** if $J_f(x) \neq 0$ whenever $x \in U$ and $f(x) = 0$.

Lemma 2. The set of regular points $f^{-1}(\{0\}) = \{x_1, x_2, \ldots x_N\}$ is finite.

Let $h: \mathbb{R}^N \to \mathbb{R}$ is a smooth function such that $\int_{\mathbb{R}^N} h(x) dx = 1$, and $h(x) = 0$ outside of a ball $B_{\varepsilon}(0)$ for some small $\varepsilon > 0$.

Integral Representation

$$
\sum_{f\in f^{-1}(0)} \mathrm{sign}(det(J_f(x_i))) = \int_U h(f(x))det(J_f(x))dx
$$

where h, f, U are defined as before. In fact, the above integral is independent of h !

Brouwer Fixed Point Theorem

Lemma 3. Let $f \in C^1(U) \cap C(\overline{U})$. U is the open unit ball and $f(x) \to 0 \ \forall x \in \partial U$. Show $\exists c \in U \ni f(c) = 0$.

Theorem

Let $f \in C^1(D) \cap C(\overline{D})$, $f: D \to D \implies \exists c \in D \ni f(c) = c$. Acknowledgements

I would like to thank Professor Niksirat for guiding and encouraging me throughout this research experience. I would also like to thank God for giving me the wisdom and knowledge to undertake this project. References

- [1] R.C.A.M. Vandervorst. Topological Methods for Non Linear Differential Equations (2014).
- [2] Teschl, Gerald. Topics in Linear and Nonlinear Functional Analysis (2022) . American Mathematical Society Providence, Rhode Island